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Abstract

In many cases the Nash equilibria are not predictive of the experimen-
tal players’ behaviour. For some games of Game Theory it is proposed
here a method to estimate the probabilities with which the different op-
tions will be actually chosen by the players. These probabilities can also
be interpreted as competitive mixed strategies. The method is shaped on
the Prisoner’s Dilemma, then adapted to other conditions like Chicken
Game, Battle of the Sexes, Stag Hunt and then applied to other games
like Diner’s Dilemma, Public Goods Game, Traveler’s Dilemma and War
of Attrition. These games are so analyzed in a probabilistic way that is
consistent to what we could expect intuitively, overcoming some known
paradoxes of the Game Theory.

1 Nash equilibria are not always predictive

In many cases the Nash equilibria are not predictive of the experimental players’
behaviour.

For instance, “in the Public Goods Game repeatedly played, experimental
observations show that individuals do not play the predicted noncooperative
equilibria”, at least not immediately (Ahn & Janseen, 2003, Adaptation vs.
Anticipation in Public-Good Games).

“In the Traveler’s Dilemma it seems very unlikely that any two individuals,
no matter how rational they are and how certain they are about each other’s
rationality, each other’s knowledge of each other’s rationality, and so on, will
play the Nash equilibrium” (Kaushik Basu, ”The Traveler’s Dilemma: Para-
doxes of Rationality in Game Theory”; American Economic Review, Vol. 84,
No. 2, pages 391-395; May 1994).

This paradox has led some to question the value of game theory in general,
while others have suggested that a new kind of reasoning is required to un-
derstand how it can be quite rational ultimately to make non-rational choices.
In this sense, Douglas Hofstadter proposed the theory of Superrationality: “it
is assumed that the answer to a symmetric problem will be the same for all
the superrational players. The strategy is found by maximizing the payoff to
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each player, assuming that they all use the same strategy. In the Prisoner’s
Dilemma two superrational players, each knowing that the other is also a super-
rational player, will cooperate” (Wikipedia, ref. Douglas R. Hofstadter, 1985,
”Metamagical Themas”, Basic Books).

I will try to quantify this concept, trying to associate to each option a prob-
ability that estimates how many players will actually choose that option. This
probability could suggest how much that option is convenient, depending on
the given parameters of the game. These estimated probabilities could also be
interpreted as competitive mixed strategies adopted by the players; given N
options, players playing with mixed strategies will use a randomizing device, set
to give the result “play option i” with probability pi, where i ∈ N, 1 ≤ i ≤ N .
Only the competitive case and not the cooperative ones will be analyzed.

This study was actually born from a practical need, i.e. preparing some
equilibrated bimatrixes (more simply we will call them “tables”) for a game of
mathematics and diplomacy, based on the Prisoner’s Dilemma. We will speak
about it after presenting the proposed model.

2 Prisoner’s Dilemma, other games and Hofs-
tadter’s Superrationality

The Prisoner’s Dilemma was originally framed by Merrill Flood and Melvin
Dresher working at RAND Corporation in 1950. Albert W. Tucker formalized
the game with prison sentence payoffs and gave it the ”prisoner’s dilemma” name
(Poundstone, 1992). A classic example of the prisoner’s dilemma is presented
as follows.

Two suspects are arrested by the police. The police have insufficient evi-
dence for a conviction, and, having separated the prisoners, visit each of them
to offer the same deal. If one testifies for the prosecution against the other
(defects) and the other remains silent (cooperates), the defector goes free and
the silent accomplice receives the full 10-year sentence. If both remain silent,
both prisoners are sentenced to only six months in jail for a minor charge. If
each betrays the other, each receives a five-year sentence. Each prisoner must
choose to betray the other or to remain silent and each one is assured that the
other would not know about the betrayal before the end of the investigation.
Both care much more about their personal freedom than about the welfare of
their accomplice. (Source: Wikipedia).

We will consider a table of Prisoner’s Dilemma, where instead of jail years
to minimize there are money prizes to maximize; given a, b, c, d ∈ R, we define
the table (a, b, c, d) in the following way: if both players cooperate, both receive
b; if both defect, both receive c; if one defects and the other cooperates, the first
receives a and the second d. Often these values are indicated with T,R, P, S,
but in this document we prefer call them a, b, c, d for several reasons, among
them the fact that we will deal with another p indicating a probability.

In the rest of the document we will analyze several conditions, sometimes
they are studied in the literature as a specific game, with a specific name:

1.1) a > b > c, d

In the Prisoner’s Dilemma c > d:
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1.2) a > b > c > d

while in the Chicken Game b > d ≥ c :

1.3) a > b > d ≥ c

In the Battle of the Sexes:

1.4) a > d > c ≥ b

In the Stag Hunt:

1.5) b > a > c > d

We will also study an anomalous case, that we will call the Translators (see
later):

1.6) a > c ≥ b > d

We will start from the following remark: in a table (a, b, c, d) like (100, 51,
50, 0) b−c is so small comparing to a−b and c−d that each player will probably
defect, according to the Nash equilibrium. Instead, in a table like (101, 100, 1,
0), like that one analyzed by Hofstadter for his Theory of Superrationality, the
advantages of defection a − b and c − d are so small that is almost not worth
the risk to come out with (1, 1) instead (100, 100), and so each player will tend
more to cooperation than to defection.

Now, we will analyze the following situation. We have a large number of
rational players that are going to play one time the Prisoner’s Dilemma; they
are divided in pairs and every pair plays with the same table (a, b, c, d); we will
try to find a probability p that could estimate how many players will cooperate,
consistently with the previous considerations. We set q = 1−p, as the defection
probability. So ∀a, b, c, d ∈ R respecting the condition 1.2) we would like to
find a 0 < p < 1, reaching p = 0 only in the limit case b ≤ c, and p = 1
only in the limit case: a ≤ b and c ≤ d. If we suppose that the players are
adopting mixed strategies with different cooperation probabilities pi, this p will
also represent the average of these pi. This estimation should depend only on
the given parameters (a, b, c, d), and not on the history of the game, that’s why
we are not going to consider iterated games, Fictitious Play or Evolutionary
Stable Strategies.

3 Maximin criterion

We could try a first way applying the maximin criterion, and analyzing the
corresponding mixed strategy; we obtain: bp+ dq = ap+ cq, and then:
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2.1) p =
c− d

(c− d)− (a− b)

But this p under the condition 1.2) is not in [0, 1], so in this case the 2.1)
does not solve the problem seen in par. 2. In order to have 0 < p < 1 we must
have either:

a− b < c−d, c > d and a < b, and it happens for example in The Stag Hunt
(b > a > c > d); or:

a− b > c− d, c < d and a > b, and it happens for example in The Chicken
Game (a > b > d ≥ c).

Moreover, as we will see later, the 2.1) does not describe well these situations.
For example, in the Stag Hunt, for b → ∞ we find that p → 0, but it should
tend to 1. And in the Chicken, for c−d = 0 we find p = 0, but if a− b << b− c,
defecting does not make sense.

4 Maximization of expected payoff

We can try a second way: we can study the p that maximizes the expected
payoff µ(p) = p2b+(1− p)2c+ p(1− p)(a+ d); we want 0 < p < 1, and we have
µ(0) = c and µ(1) = b. Putting dµ

dp = 0, we obtain

2.2) p =
a+ d− 2c

2(a− b− c+ d)
= η

µ(η) is a maximum if c − d < a − b, otherwise it is a minimum. If it is
a maximum, then pMAX (the maximizing p) equals to η and we can see that
b > c ⇒ η > 1/2. In order to have η < 1 we find a − b > b − d. So, if
a− b > b−d ⇒ 1/2 < η < 1 ⇒ pMAX = η and µ(pMAX) > b; in the other cases
pMAX = 1 and µ(pMAX) = b. Also in this second way, under the condition 1.2)
the p in 2.2) is not always in [0, 1].

5 Maximization of expected payoff, given the
opponent cooperation probability

A third way could be to try to maximize the payoff µ1 of player 1, given the p2,
the cooperation probability of player 2.

µ1 = p1p2b+ (1− p1)(1− p2)c+ p1(1− p2)d+ p2(1− p1)a
µ1(p1) is a linear function with domain 0 ≤ p1 ≤ 1, having maximum in

p1 = 0 if the p1 coefficient p2(b+c−a−d)+(d−c) < 0 and maximum in p1 = 1
if p2(b+ c− a− d) + (d− c) > 0.

If p2(b + c − a − d) + (d − c) = 0 we have p2 = c−d
(c−d)−(a−b) = θ and in this

case the function is flat.
Studying the function µ1(p1) it is possible to see that p1MAX = 1 only if

θ ∈ [0, 1)(⇔ c ≤ d) and p2 < θ, otherwise p1MAX = 0. This is consistent with
the Nash equilibria (p1MAX = 0) in the Prisoner’s Dilemma (a > b > c > d)
and also with the non-coordination Nash equilibria in the Chicken Game (a >
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b > d ≥ c). In the Chicken Game, assuming that we know p2, we can switch
our p1 from 0 to 1 if we see that p2 < θ, and vicecersa. If p2 = θ then our p1
does not affect µ1.

But still we did not find what we are looking for, because this third approach
does not solve the problem seen in par. 2.

6 The proposed estimation of the cooperation
probability

Let us examine a fourth way. Under the condition 1.2) (a > b > c > d),
we try to think the possible behaviour of a generical player X playing against
a generical player Y. We can assume that the probability px that s/he will
cooperate is proportional to b−c (the benefit received by two cooperating players
comparing with two defecting players), while the probability qx that s/he will
defect is proportional to py(a − b) + qy(c − d) (the benefits received by player
X defecting instead of cooperating, weighted according to the cooperation and
defection probabilities of player Y). We could start our reasoning giving to py
an arbitrary initial value 0 ≤ p0 ≤ 1 (q0 = 1 − p0). Said b − c = φ and
p0(a− b) + q0(c− d) = χ0, the first estimation of px is p1 = φ/(φ+ χ0). Now,
using this first estimation of px, we can try to give a first estimation of py,
considering that, consistently with the previous reasoning, py is proportional to
φ and qy is proportional to p1(a − b) + q1(c − d) = χ1, so p2 = φ/(φ + χ1).
We can continue this procedure giving a second estimation of px, then a second
estimation of py, and so on. Said p(a− b)+ q(c−d) = χ, this recursive sequence
pi, independently from the starting point p0, will tend to: p = φ/(φ+ χ).

From there we obtain a second degree equation:

3) p2(a− b− c+ d) + p(b− d) + (c− b) = 0

with solution

4.1) p =
d− b±

√
(b− d)2 + 4(b− c)(a− b− c+ d)

2(a− b− c+ d)

with a− b− c+ d 6= 0.
If a− b− c+ d = 0 from the 3) we have more simply

4.2) p =
b− c

a− c

For example, going back to what we have seen in paragraph 2, in the Hofs-
tadter’s table (101, 100, 1, 0) the 4.2) gives p = 99%, and in the table (100, 51,
50, 0) the 4.1) gives p ≈ 1.96%; these results are consistent with what we could
expect intuitively.
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7 The probability is univocal and always defined

We can prove that under condition 1.2) (a > b > c > d) there is always only
one root of the equation 4.1) in [0, 1], so in Prisoner’s Dilemma the proposed
estimation is univocal and always defined.

We call t and v the roots of the equation. Then:
b−d

a−b−c+d = −(t+ v) and c−b
a−b−c+d = tv

Given a table (a, b, c, d), all other tables obtained from the first maintaing
unchanged the differences a − b, b − c, c − d are equivalent concerning the
calculation of p. Therefore we can fix d = 0 and then express a and c as a
function of b, t, v.

We obtain a
b = 2− tv+1

t+v and c
b = 1− tv

t+v , with t+ v 6= 0.
From the condition 1.2, and being d = 0 ⇒ b > 0, we have:
a
b > 1 ⇒ 2− tv+1

t+v > 1 ⇒ tv+1
t+v < 1.

If t+ v > 0 ⇒ t+ v > tv + 1.
If t+ v < 0 ⇒ t+ v < tv + 1
and moreover:
c
b < 1 ⇒ 1− tv

t+v < 1 ⇒ tv
t+v > 0.

If t+ v > 0 ⇒ tv > 0
If t+ v < 0 ⇒ tv < 0

We first analyze the hypothesis t+ v > 0:
t+ v > 0 ⇒ tv > 0 ⇒ t, v > 0.
The roots cannot be both greater than 1. If they were, we would have:

t = 1+ x, v = 1+ y, with x, y real positive. t+ v > tv+1 ⇒ (1+ x)+ (1+ y) >
(1 + x)(1 + y) + 1 ⇒ 2 + x+ y > 1 + x+ y + xy + 1 ⇒ xy < 0, impossible.

At the same time the roots cannot be both in [0, 1]:
t+ v > tv + 1 ⇒ t(1− v) > 1− v ⇒
if 1− v > 0(⇒ v < 1) ⇒ t > 1−v

1−v = 1

if 1− v < 0(⇒ v > 1) ⇒ t < 1−v
1−v = 1

Hence, in the hypothesis t+ v > 0, there is always one root in [0, 1] and the
other one greater than 1.

We analyze now the other hypothesis t+ v < 0:
t+ v < 0 ⇒ tv < 0 so the roots have opposite signs. Said t < 0 and v > 0,

we have: t+ v < tv+1 ⇒ v(t− 1) > t− 1 ⇒ v < 1. Therefore in the hypothesis
t+ v < 0 there is always one root in [0, 1] and the other one negative.

Furthermore, it is easy to prove that in the 4.1) the root in [0, 1] is always
that one with +

√
(b− d)2 + 4(b− c)(a− b− c+ d), so:

4.3) p =
d− b+

√
(b− d)2 + 4(b− c)(a− b− c+ d)

2(a− b− c+ d)

8 Equiprobability condition

In the light of what we said, in some tables it will be more probable that players
cooperate and in other it will be more probable that players defect. We search
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now under which condition is the boundary between these two types of tables.
So we impose p = 1/2, therefore

5) p =
d− b+

√
(b− d)2 + 4(b− c)(a− b− c+ d)

2(a− b− c+ d)
=

1

2

We obtain the equiprobability condition:

6) a− d = 3(b− c) ⇔ b− c =
(a− b) + (c− d)

2

so b− c is the average of a− b and c− d, as it could be easily deduced also
from the initial model, putting p = q (and so φ = χ). It is possible to prove

that, as expected, p > 1/2 ⇔ b− c > (a−b)+(c−d)
2 .

9 Prisoner’s Dilemma with n players

In the case with 3 players, we define the table as follows: if everyone cooperates,
everyone receives g; if one defects and two cooperate, the first one receives f ,
and the other two receive j; if two defect and one cooperate, the first two receive
h and the third one receives m; if everyone defects, everyone receives k:

C,C,C → g, g, g; D,C,C → f, j, j; D,D,C → h, h,m; D,D,D → k, k, k;
with f, g, h, j, k,m ∈ R.
Supposing that one player will cooperate, the table for the other two players

becomes: (f, g, h, j); studying this table under the condition 1.2) we need f >
g > h > j. Supposing that one player will defect, the table for the other two
players becomes: (h, j, k,m); studying this table under the condition 1.2) we
need h > j > k > m. Therefore, the condition 1.2) for 3 players becomes
f > g > h > j > k > m.

7) f > g > h > j > k > m

Now we will analyze the cooperation probability p and the defection prob-
ability q consistently to the model for 2 players. Supposing that one player
will cooperate, in the table (f, g, h, j) p is proportional to g − h = φp and q is
proportional to p(f − g) + q(h− j) = χp; supposing that one player will defect,
in the table (h, j, k,m) p is proportional to j − k = φq and q is proportional to
p(h− j) + q(k −m) = χq.

Hence we consider p proportional to pφp + qφq = p(g − h) + q(j − k) = ψ
and q proportional to pχp + qχq = p2(f − g) + 2pq(h− j) + q2(k −m) = ω.

Hence p = ψ/(ψ + ω).
From there we obtain a third degree equation:

8) p3(f − g − 2h+ 2j + k −m) + p2(g + h− 3j − k + 2m) + p(−g + h+ 2j − k −m) + (−j + k) = 0

Putting p = 1/2, and so ψ = ω, we obtain the equiprobability condition:
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9) f −m+ 4(h− j) = 3(g − k)

The procedure can be recursively extended to n players, even if for n ≥ 5,
as known, only in some cases we will be able to calculate exactly the roots.

10 Translators condition

We come back to the case for 2 players. We analyze some other conditions
that we will find later in some applications and that are useful to define some
boundaries of the proposed estimation.

We will examine first the condition 1.6) a > c ≥ b > d. We can model this
situation in the following way. There are two translators that have an excellent
level in Esperanto, Galician and Sardinian; the first one has to translate a text
from Esperanto into Galician and the second the same text from Esperanto into
Sardinian, but the first is much faster in Galician and the second in Sardinian
(same speeds, but swapped). Collaborating means helping the other to translate
a certain paragraph of the text. So of course if one is helped by the other he
will finish earlier, and with a same excellent level of the translated text; but if
they both collaborate, they will need globally more time than if they don’t. So
saying that a, b, c, d represent the free time remaining after work in the different
cases, we obtain the 1.6).

When the condition 1.2) is not respected, the equations 4.3) and 4.2) give
often results not in [0,1]. This happens because, even when φ and χ remain
positive, some addends are negative. But consistently with the proportional
method that we are using, each addend in φ and χmust be positive. In condition
1.6), being b − c < 0 we need to tune our method considering: φ = 0 and
χ = c− b+ p(a− b) + q(c− d), therefore p = 0, as we could have expected.

11 Stag Hunt condition

An interesting case is the condition 1.5) b > a ≥ c > d, called Stag Hunt.
In “Discours sur l’origine de l’inégalité parmi les Hommes” (1754) Jean-Jacques
Rousseau described a situation in which two individuals go out on a hunt: “Voilà
comment les hommes purent insensiblement acquérir quelques idées grossières
des engagements mutuels, et de l’avantage de les remplir mais seulement autant
que pouvait l’exiger l’intérêt présent et sensible ; car la prévoyance n’était rien
pour eux, et, loin de s’occuper d’un avenir éloigné, ils ne songeaient même pas
au lendemain. S’agissait-il de prendre un cerf, chacun sentait bien qu’il devait
pour cela garder fidèlement son poste ; mais si un lièvre venait à passer à la
portée de l’un d’eux, il ne faut pas douter qu’il le poursuivit sans scrupule, et
qu’ayant atteint sa proie il ne se soucia fort peu de faire manquer la leur à ses
compagnons”. So, if both collaborate in hunting the stag, they both receive
b, if both will hunt the less worthy hare both receive c (c < b), if one hunts
the hare while the other remains alone trying to hunt the stag, the first one
receives a (b > a ≥ c) and the second one receives d (d < c). Here we have
φ = b−c+p(b−a) and χ = q(c−d). We could expect that under this condition
should be always p = 1. The equation in this case can be expressed as:
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10.1) (p− 1)(p− c− b

−a+ b− c+ d
) = 0

with −a+ b− c+ d 6= 0, therefore actually one root is always 1.
Say the second root r2 = (c− b)/(−a+ b− c+ d). If r2 ≥ 1 the attractor of

the recursive sequence for the set [0, 1] is 1, and so p = 1. If 0 ≤ r2 < 1 we find

10.2) 0 ≤ b− c

a− d
< 1/2

In this case r2 is the attractor for the set [0, 1], and so p = r2. This result
could be unexpected, as a < b, but actually it is consistent with the problem:
for example, in the condition a − d >> b − c (that respects the 10.2) the risk
to receive d is not comparable to the small advantage b − a, so p is small. If
a− b+ c− d = 0, we find χ = q(b− a) ⇒ p = b−c

b−c = 1, and it agrees with 10.2),

being b−c
a−d = 1 ⇒ r2 ≥ 1.

12 Chicken condition

In the Chicken Game two drivers run one against the other. If one swerves, he
will be considered as a “chicken” and the other will win the game. If nobody
swerves, they will have a serious crash, and it will be even worse than being
considered a chicken. If both swerve, they will share the shame (having a better
outcome than being the only chicken). In this game the condition is 1.3) a >
b > d ≥ c; being c − d ≤ 0 we have φ = b − c + q(d − c) and χ = p(a − b),
therefore:

10.3) p =
3c− b− 2d±

√
(3c− b− 2d)2 − 4(2c− b− d)(a− b+ c− d)

2(a− b+ c− d)

with a− b+ c− d 6= 0.
If a− b+ c− d = 0:

10.4) p =
a− c

2a− b− c

13 Battle of the Sexes condition

A husband and a wife agree to meet this evening, but cannot recall if they will
be attending the opera or a boxing match. He prefers the boxing match and
she prefers the opera, though both prefer being together to being apart. Let
us consider the cooperation probability p as the probability to choose the event
preferred by the other. In this game the condition is the 1.4) (a > d > c ≥ b).
Therefore φ = q(d− c) and χ = c− b+ p(a− b) and we obtain:

10.5) p =
c+ b− 2d±

√
(c+ b− 2d)2 + 4(d− c)(a− b+ c− d)

2(a− b+ c− d)
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with a− b+ c− d 6= 0.
If a − b + c − d = 0 (and so a − b = d − c), we have φ = q(a − b) and then

more simply

10.6) p =
a− b

a+ d− 2b

We examine here the case (3, 0, 0, 2).
As already seen in equation 2.1, the classical maximin mixed strategy gives

pmm = a−c
(a−b)−(c−d) , in this case pmm = 60%, so each player attends their

preferred event less often than the other event. Applying the 10.5) we find
p ≈ 45%, so each player attends their preferred event more often than the other
event.

14 Application to a game based on the Pris-
oner’s Dilemma

In this game there are 4 to 10 teams (with 1 or more players) representing some
nations. At each round the nations are coupled and play a series of phases with
tables of Prisoner’s Dilemma (or Chicken), accumulating money that they will
be able to invest in weapons or (at the end of the round) in development points.
The following parts of the round are dedicated to alliances, spying and wars;
the war winners steal money from the losers. After a certain number of rounds,
the winner is the nation with most development points. If the number of teams
is odd, at each round there will be a group of 3 nations that will play tables for
3 players. Hence it was necessary to have in each phase a table for 2 players and
a table for 3 players, and in each phase these 2 tables should be equilibrated
between them in terms of p and µ (average payoff in the table, weighted in
terms of p). Moreover, having several tables in each round, it was necessary that
these tables were equilibrated among them. The tables were tuned applying the
formulas presented in this study; testing the game, the obtained results were
very satisfying. Here we show some of these tables.

In the case for 2 players:

11.1) µ = p2b+ q2c+ pq(a+ d)

In the case for 3 players:

11.2) µ = p3g + q3k + p2q(f + 2j) + pq2(2h+m)

Table 1 : Management of industry and commerce
Example of two companies that don’t have the right to agree on a common

commercial strategy and that wonder if they should (D) or not (C) lower the
prices to conquer parts of the market from their opponent.

1) D,D = 5,5
2) C,C = 7,7
3) D,C = 10,1

10



(p=35 %, µ =5,47)
For 3 players :
1) D,D,D = 4,4,4
2) C,C,C = 8,8,8
3) D,D,C = 7,7,2
4) D,C,C = 10,5,5
(p=33%, µ =5,33)

Table 2 : Corruption
Every country did small or big illegal actions... Are you going (D) or not

(C) to denounce your opponent ?
1) D,D = -2,-2
2) C,C = 2,2
3) D,C = 8,-4
(p=50%, µ =1)
For 3 players :
1) D,D,D = -2,-2,-2
2) C,C,C = 4,4,4
3) D,D,C = 1,1,-4
4) D,C,C = 10,-2,-2
(p=50%, µ =1,25)

Table 5 : Sharing of subventions
The international funds finance the nations with sums that can be shared

more (C) or less (D) honestly.
1) D,D = 5,5
2) C,C = 8,8
3) D,C = 9,2
(p=63%, µ =6,43)
For 3 players :
1) D,D,D = 3,3,3
2) C,C,C = 8,8,8
3) D,D,C = 7,7,2
4) D,C,C = 9,6,6
(p=63%, µ =6,63)

15 Application to the Diner’s Dilemma

In the Diner’s Dilemma N friends go to a restaurant and before to order they
decide to divide the bill in equal parts. It is possible to choose between an
expensive menu and a cheap menu. We define r the cost of the expensive menu,
s the value of the expensive menu, u the value of the cheap menu, w the cost
of the cheap menu, with r, s, u, w ∈ R+ and with the condition r > s > u > w.
If instead of menus, we consider objects, the ”value” can be better understood
quantifying it as the price at which the object can be resold. Moreover, we
consider the condition:
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12) s− r/N > u− w/N ⇔ r − w

s− u
< N

i.e. egoistically it is convenient to order the expensive menu. (r−w)/(s−u)
is the ratio between the difference of the costs and the difference of the values,
that we will call for short as ”costs-benefits ratio” (Rcb).

Remodeling the problem as in the case of the Prisoner’s Dilemma, in the
case N = 2 we will have:

a = s− r/2− w/2
b = u− w
c = s− r
d = u− r/2− w/2
Considering the condition 1.2) for the Prisoner’s Dilemma we find

13) a > b ⇔ Rcb < 2

that is equivalent to 12) for N = 2, and

14) b > c ⇔ Rcb > 1

From c > d we obtain again the 13). From the equiprobability condition 6)
we find:

15) p > 1/2 ⇔ a− d < 3(b− c) ⇔ Rcb >
4

3

Being a− b = c− d, from 4.2) we obtain p as a function of Rcb:

16) p =
b− c

a− c
⇔ p = 2− 2/Rcb

with domain defined by 1 < Rcb < 2. In the limit case Rcb = 2 we find
p = 1, and indeed a = b e c = d, so there is no convenience in defecting. In
the other limit case Rcb = 1 we find p = 0, and indeed b = c, so there is no
convenience in cooperating.

In the case N = 3 we have:
f = s− r/3− 2w/3
g = u− w
h = s− 2r/3− w/3
j = u− r/3− 2w/3
k = s− r
m = u− 2r/3− w/3
Considering the condition 7) for the Prisoner’s Dilemma with 3 players, we

find:
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17) (f > g OR h > j OR k > m) ⇔ Rcb < 3

that is equivalent to 12) for N=3.

18) (g > h OR j > k) ⇔ Rcb > 3/2

From the equiprobability condition 9) we have:

19) p > 1/2 ⇔ 3(g − k) > f −m+ 4(h− j) ⇔ Rcb > 2

From equation 8), being equal to 0 the coefficients of p3 e p2, we obtain an
equation of first degree that expresses p as a function of Rcb:

20) p =
k − j

−g + h+ 2j − k −m
⇔ p = 2− 3/Rcb

with the domain defined from 1.5 < Rcb < 3.
Can we suppose that for N players the formula is p = 2−N/Rcb with domain

N/2 < Rcb < N ?

16 Application to the Public Goods Game

We find a very similar result in the Public Goods Game. In the basic game
each player has r Euros (r ∈ R) and decides how much s/he wants to put in
a common pot. Then the euros in the pot grow by an interest rate of k > 1
(k ∈ R), and then they are equally redistributed to the players. We will analyze
the simple case of 2 players, where each player can put either r or 0. We find:

a = r + kr/2
b = kr
c = r
d = kr/2.
a > b ⇒ k < 2
b > c ⇒ k > 1.
a− b = c− d ⇒ p = b−c

a−c = 2− 2/k.
p > 1/2 ⇒ k > 4/3.
Exactly as in the 13-16 of Diner’s Dilemma.
Now we can try to see what happens if each player has not only 2 op-

tions, but N + 1 options (N ∈ N), having the possibility to put in the pot:
0, r/N, 2r/N, ..., ir/N, ..., r. Said ir/N and jr/N two possible amounts to put
in the pot (i, j ∈ N), said Tij the table considering the two options i or j, we
define pij as the cooperation probability in Tij , meaning the probability to put
the larger amount between ir/N and jr/N . And we define qij = 1 − pij . As
p = 2−2/k, p depends only on k, and not on r,i or j; fixed k∗, we define the value
2−2/k∗ = p∗, and q∗ = 1−p∗. We define pi = p(ir/N) the probability to choose
the amount ir/N among the N + 1 options. In analogy with the paragraph 6,

each pi is proportional to Ui =
∑i−1

j=0 pij +
∑N

j=i+1 qij = ip∗ + (N − i)q∗.
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So, for each i we calculate the proportionality coefficient Ui adding the prob-
abilities to play the amount ir/N in the table Tij for each other j. In fact, for
j < i, in the table Tij , the probability to play the amount ir/N is p∗, and for

j > i is q∗. We find that
∑N

i=0 Ui = N(N + 1)/2 = W . Then the pi are:

21) pi =
Ui

W
=

ip∗ + (N − i)q∗
N(N + 1)/2

For a numerical example, let us set r = 100, N = 4 and so we have 5 options:
0, 25, 50, 75 or 100 euros.

For k = 4/3 ⇒ p∗ = 1/2, we obtain: pi = 20% each, because we are in the
equiprobability condition.

For k = 3/2 ⇒ p∗ = 2/3, we obtain:
p0 = p(0) = 4/30 ≈ 13.3%,
p1 = p(25) = 5/30 ≈ 16.7%,
p2 = p(50) = 6/30 = 20%,
p3 = p(75) = 7/30 ≈ 23.3% and
p4 = p(100) = 8/30 ≈ 26.7%.
The pi increase with the amount because k > 4/3.
For k = 6/5 ⇒ p∗ = 1/3, we obtain:
p0 = p(0) = 8/30 ≈ 26.7%,
p1 = p(25) = 7/30 ≈ 23.3%,
p2 = p(50) = 6/30 = 20%,
p3 = p(75) = 5/30 ≈ 16.7% and
p4 = p(100) = 4/30 ≈ 13.3%.
The pi decrease with the amount because k < 4/3.

17 Application to the Traveler’s Dilemma

This game was formulated in 1994 by Kaushik Basu and goes as follows. An
airline loses two suitcases belonging to two different travelers. Both suitcases
happen to be identical and contain identical antiques. An airline manager tasked
to settle the claims of both travelers explains that the airline is liable for a
maximum of $100 per suitcase, and in order to determine an honest appraised
value of the antiques the manager separates both travelers so they can’t confer,
and asks them to write down the amount of their value at no less than $2 and no
larger than $100. He also tells them that if both write down the same number,
he will treat that number as the true dollar value of both suitcases and reimburse
both travelers that amount. However, if one writes down a smaller number than
the other, this smaller number will be taken as the true dollar value, and both
travelers will receive that amount along with a bonus/malus: $2 extra will be
paid to the traveler who wrote down the lower value and a $2 deduction will
be taken from the person who wrote down the higher amount. The challenge
is: what strategy should both travelers follow to decide the value they should
write down?

Say r the maximum value, s the minimum value, t the bonus, with r > s ≥
t > 0 (r, s, t ∈ R). The two players have N + 1 options: given v = (r − s)/N
they can play s, s+ v, s+ 2v, ..., s+ iv, ..., r, with i,N ∈ N.
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We will try to apply again the considerations in paragraph 6 to the case
with the 2 options s+ iv and s+ jv (j ∈ N); said Tij the table considering the
two options i or j, we define pij as the cooperation probability in Tij , so the
probability to play the biggest value between s+ iv and s+ jv. We obtain the
following values, with i > j:

a = s+ jv + t
b = s+ iv
c = s+ jv
d = s+ jv − t.
We find a > b ⇒ i− j < t/v, and t > 0 ⇒ c > d.
b > c ⇒ i > j, already known.
Applying the 4.3, we obtain the cooperation probability pij (for i > j it is

the probability to play s+ iv):

22) pij =
−(t+ (i− j)v) +

√
(t+ (i− j)v)2 − 4(i− j)2v2

2(j − i)v

If i− j ≥ t/v ⇔ b > a we are under the condition b > a > c > d, so we must
apply the 10.1).

If i < j we just swap i and j, obtaining the same cooperation probability,
that in this case will be the probability to play s + jv. We can see that pij
depends on | i− j |, but not on i or j separately.

From the equation 6, we can see that the equiprobability condition is:

23) 3(b− c) > (a− d) ⇔ i− j > 2t/3v

With the same method used for the Public Goods Game, we have Ui =∑i−1
j=0 pij +

∑N
j=i+1 qij , W =

∑N
i=0 Ui and pi = Ui/W .

For a simple numerical example, let us set r = 4, s = 2, t = 2, N = 2
(3 options), v = 1. We can see that for | i − j |= 1 we have pij ≈ 38%; for
| i−j |≥ 2, considering the 10.2), we can check that (b−c)/(a−d) ≥ 1/2, hence
we have always pij = 1. We obtain:

p0 = p(2) ≈ 20.6%,
p1 = p(3) ≈ 33.3%,
p2 = p(4) ≈ 46.1%.
In the original problem, with r = 100, s = 2, t = 2, N = 98 (99 options),

v = 1; here also for | i − j |≥ 2, (b − c)/(a − d) ≥ 1/2, hence we have always
pij = 1. We obtain

p98 = p(100) ≈ 2.01%
p0 = p(2) ≈ 0.0128%
pi = p(i+ 2) ≈ i0.0206%.
These results are consistent with what we could expect intuitively.
In the article The Traveler’s Dilemma (Basu, Kaushik. Scientific American

Magazine; June 2007) experimental results are reported, where r = 200, s = 80,
N = 120 (121 options), v = 1. For t = 5 the average amount proposed by the
players was µ = 180, and for t = 80 it was µ = 120. Both results are quite far
from the Nash equilibrium (s = 80). With our method we obtain: for t = 5,

µ =
∑N

i=0(s + iv)pi ≈ 160 and for t = 80, µ ≈ 144. Our model is not too far
from the experimental results.
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18 Application to the War of Attrition

The same method used for the Traveler’s Dilemma will be now applied to the
War of Attrition, with similar results. This problem was originally formulated by
John Maynard Smith in “Theory of games and the evolution of animal contests”
(1974, Journal of Theoretical Biology 47: 209-221). The game works as follows:
there are 2 players, each makes a bid; the one who bids the highest wins a
resource of value x ∈ R+. Each player pays the lowest bid. If each player bids
the same amount, they will win x/2 each.

We will analyze the case with the 2 bid options i and j (i, j ∈ N), considering
pij as the cooperation probability (so the probability to play the smallest value
between i and j). We obtain for the table Tij the following values, with i > j:

a = x− j
b = x/2− j
c = x/2− i
d = −j.
We find a > b ⇒ x > 0, already known. b > c ⇒ i > j, already known.
Applying the 4.3, we obtain the cooperation probability pij (for i > j it is

the probability to play j):

24) pij =
−x/2 +

√
x2/4 + 4(i− j)2

2(i− j)

If i < j we just swap i and j, obtaining the same cooperation probability,
that in this case will be the probability to play i. We can see that pij depends
on | i − j |, but not on i or j separately. Furthermore, differently from the
Traveler’s Dilemma, 0 < pij < 1 always. For i− j tending to +∞, p tends to 1.

From the equation 6, we can see that the equiprobability condition is:

25) 3(b− c) > a− d ⇔ i− j > x/3

With the same method used for the Public Goods Game and for the Trav-
eler’s Dilemma, we have Ui =

∑i−1
j=0 qij +

∑N
j=i+1 pij , W =

∑N
i=0 Ui and

pi = Ui/W .
For a simple numerical example, let us set x = 2, 0 ≤ i, j ≤ 4. We obtain:
p0 = p(0) ≈ 29.2%
p1 = p(1) ≈ 25.5%
p2 = p(2) = 20%
p3 = p(3) ≈ 14.5%
p4 = p(4) ≈ 10.8%.
Also in this case the results are consistent with what we could expect intu-

itively.

19 Conclusions

The proposed approach seems to describe quite well some classical games of
the game theory, using an estimation of the players’ behaviour to solve some
paradoxes. This estimation can be seen as a convenience index for the different

16



options. We can see these results also from the point of view of competitive
mixed strategies: assuming that players are playing different mixed strategies,
this estimation represents the average of these played strategies. It is possible to
apply this approach to many other games, only some applications were showed
here. Another interesting result could be to extend this method to calculate the
probability density associated to a continuous range of options; for example, in
the Public Goods Game, in the Traveler’s Dilemma and in the War of Attrition,
each player could choose whatever real number in a fixed range.
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