Soluzioni e spiegazioni della Finale italiana dei Campionati Internazionali di Giochi Matematici – 19.5.2012

Dopo testi e soluzioni pubblicate qualche ora fa, ecco il contributo di Simone Di Marino, campione internazionale 2011 in GP (terzo oro italiano negli ultimi quattro anni in questa categoria).

Soluzioni:

1) 3
2) 1200
3) 12
4) 29/09/2089
5) –
6) 1234-5-6+789
7) 8
8} –
9) 1831
10) –
11) 4
12) 481,518,592,629
13) 11/20
14) 8.5
15) 35
16) 144
17) a=6 b=19 c=30
18) 17
19) 2023066

20) (una delle soluzioni)

1246
4513
3562

Ed ecco le spiegazioni degli esercizi più interessanti:

Le spiegazioni di Simone Di Marino – finale italiana 2012

P.S. Il programma del Festival di Giochi Matematici (Caldè, 26-29 luglio 2012) sarà presto su questo sito.

 

Testo e soluzioni della Finale italiana dei Campionati Internazionali di Giochi Matematici – 19.5.2012

Ieri pomeriggio si è svolta presso l’Università Bocconi di Milano la Finale Italiana dei Campionati Internazionali di Giochi Matematici.
Ecco il testo, gentilmente inviatoci da Sara Parton:

Ed ecco alcune delle soluzioni, offerte da Filippo Valsorda (seguiranno a breve tutte le soluzioni e alcune spiegazioni):

P.S. Il programma del Festival di Giochi Matematici (Caldè, 26-29 luglio 2012) sarà presto su questo sito.

8000€ in palio per problemi ludomatematici !

di Cesco Reale

Il Prof. Christian Boyer mi segnala un paio di siti interessanti:
www.morpionsolitaire.com
(tris solitario)

E 8000€ per risolvere alcuni problemi numerici di matematica ricreativa: www.multimagie.com/Francais/MagicSquaresEnigmasF.pdf (in francese)
www.multimagie.com/English/MagicSquaresEnigmasE.pdf (in inglese).

Riuscirà a vincerli qualche nostro prode paladino ?
Teneteci aggiornati, e buona fortuna !

Marteludico – Fare un quarantotto

Tutti i martedì proponiamo un gioco matematico. Potete provare a risolverlo e lasciare un commento con il risultato. Il martedì successivo verrà pubblicata la soluzione. Ci scusiamo per il ritardo di pubblicazione di questa puntata.

Filippo e Clara lanciano a turno un dado a sei facce e sommano di volta in volta il risultato a quelli precedenti. A un certo punto Filippo esclama: “Siamo arrivati a 48. In effetti questo tiro è stato il primo per il quale la probabilità che il totale fosse maggiore o uguale a 48 è stata più del 50%”.

Quante volte è stato lanciato il dado?

Il gioco di martedì scorso

Cesco ama giocare con le tessere. Oggi ha trovato nel cassetto del comodino 45 tessere così contrassegnate:

  • una tessera con scritto il numero 1;
  • due tessere con scritto il numero 2;
  • tre tessere con scritto il numero 3;
  • nove tessere con scritto il numero 9.

Quanti sono i possibili diversi numeri di 6 cifre che si possono comporre con le tessere?

Soluzione. Si possono comporre 446.914 numeri differenti.

Marteludico – Le tessere

Tutti i martedì proponiamo un gioco matematico. Potete provare a risolverlo e lasciare un commento con il risultato. Il martedì successivo verrà pubblicata la soluzione.

Cesco ama giocare con le tessere. Oggi ha trovato nel cassetto del comodino 45 tessere così contrassegnate:

  • una tessera con scritto il numero 1;
  • due tessere con scritto il numero 2;
  • tre tessere con scritto il numero 3;
  • nove tessere con scritto il numero 9.

Quanti sono i possibili diversi numeri di 6 cifre che si possono comporre con le tessere?

Il gioco di martedì scorso (di Giorgio Dendi)

  • Esiste un triangolo con gli angoli in successione, in modo che misurino x, 2x, 3x? Sì, esiste, e gli angoli misurano 30°, 60°, 90°.
  • Esiste un quadrilatero con gli angoli in successione, in modo che misurino x, 2x, 3x, 4x?
  • Esiste un pentagono con gli angoli in successione, in modo che misurino x, 2x, 3x, 4x, 5x?
  • Esiste un poligono di n lati con gli angoli in successione, in modo che misurino x, 2x, 3x, … nx?

A quasi tutte queste domande la risposta è affermativa, meno che in pochi casi. Quando?

Soluzione. Immaginiamo di dover trovare le misure degli angoli del triangolo: saranno x, 2x, 3x, per un totale 6x. Siccome la somma degli angoli interni vale 180°, l’angolo minore misurerà 180°/6 = 30°, e quindi avremo 30°, 60°, 90°.
Passiamo al quadrilatero, dove gli angoli saranno x, 2x, 3x, 4x, per un totale di 10x. Siccome la somma degli angoli interni vale 2*180°, l’angolo minore misurerà 2*180°/10 = 36°, e quindi avremo 36°, 72°, 108°, 144°.
Passiamo al pentagono, dove gli angoli saranno x, 2x, 3x, 4x, 5x, per un totale di 15x. Siccome la somma degli angoli interni vale 3*180°, l’angolo minore misurerà 3*180°/15 = 36°, e quindi avremo 36°, 72°, 108°, 144°, 180°. Secondo i calcoli, fila tutto liscio, come nei casi precedenti, ma ci è capitato un angolo di 180°, cioè piatto, e quindi inesistente: la figura è degenere e diventa un quadrilatero, quindi un pentagono come richiesto non esiste.
Proseguendo come sopra, troviamo che un esagono avrà gli angoli con numeri decimali, a partire da 34,285714…°, l’ettagono avrà gli angoli multipli di 32,142857…°, e l’ottagono, avendo gli angoli di 30°, 60°, 90°, 120°, 150°, 180°, 210°, 240°, sarà nuovamente una figura degenere, e quindi non valida, avendo un angolo di 180°.
Proseguendo nei calcoli, non si trovano altre figure impossibili da ottenere, e quindi possiamo rispondere che esistono figure come richiesto con qualunque numero di lati, tranne 5 e 8, in quanto risultano degeneri.
Si può dare una risposta più rigorosa, osservando che la somma degli angoli di una figura di n lati vale (n-2)*180, e dividendo questo risultato per l’n-simo numero triangolare (la cui formula è n*(n+1)/2), si ottiene la misura dell’angolo minore.
L’angolo minore misurerà quindi 360*(n-2)/n*(n+1). Possiamo ottenere una figura degenere soltanto se uno dei suoi multipli vale180°. La ricerca ci dà nuovamente risultati solo nei casi n=5; n=8.